Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 79(2): 409-424, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505219

RESUMO

BACKGROUND AND AIMS: NASH represents a severe stage of fatty liver disease characterized by hepatocyte injury, inflammation, and liver fibrosis. Myeloid-derived innate immune cells, such as macrophages and dendritic cells, play an important role in host defense and disease pathogenesis. Despite this, the nature of transcriptomic reprogramming of myeloid cells in NASH liver and its contribution to disease progression remain incompletely defined. APPROACH AND RESULTS: In this study, we performed bulk and single-cell RNA sequencing (sc-RNA seq) analysis to delineate the landscape of macrophage and dendritic cell transcriptomes in healthy and NASH livers. Our analysis uncovered cell type-specific patterns of transcriptomic reprogramming on diet-induced NASH. We identified brain-abundant membrane-attached signal protein 1 (Basp1) as a myeloid-enriched gene that is markedly induced in mouse and human NASH liver. Myeloid-specific inactivation of Basp1 attenuates the severity of diet-induced NASH pathologies, as shown by reduced hepatocyte injury and liver fibrosis in mice. Mechanistically, cultured macrophages lacking Basp1 exhibited a diminished response to pro-inflammatory stimuli, impaired NLRP3 inflammasome activation, and reduced cytokine secretion. CONCLUSIONS: Together, these findings uncover Basp1 as a critical regulator of myeloid inflammatory signaling that underlies NASH pathogenesis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Hepatócitos/metabolismo , Dieta , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Mol Cell ; 80(3): 437-451.e6, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157014

RESUMO

Amino-acid-induced lysosomal mechanistic target of rapamycin complex 1 (mTORC1) localization through the Rag GTPases is a critical step for its activation by Rheb GTPase. However, how the mTORC1 interacts with Rheb on the lysosome remains elusive. We report that amino acids enhance the polyubiquitination of Rheb (Ub-Rheb), which shows a strong binding preference for mTORC1 and supports its activation, while the Ub-Rheb is subjected to subsequent degradation. Mechanistically, we identified ATXN3 as a Ub-Rheb deubiquitinase whose lysosomal localization is blocked by active Rag heterodimer in response to amino acid stimulation. Consistently, cells lacking functional Rag heterodimer on the lysosome accumulate Ub-Rheb, and blockade of its degradation instigates robust lysosomal mTORC1 localization and its activation without the Ragulator-Rag system. Thus, polyubiquitination of Rheb is an important post-translational modification, which facilitates the binding of mTORC1 to Rheb on the lysosome and is another crosstalk between the amino acid and growth factor signaling for mTORC1 activation.


Assuntos
Ataxina-3/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Aminoácidos/metabolismo , Animais , Ataxina-3/fisiologia , Linhagem Celular , Enzimas Desubiquitinantes/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Ligação Proteica/fisiologia , Proteína Enriquecida em Homólogo de Ras do Encéfalo/fisiologia , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Ubiquitinação
3.
Elife ; 62017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650797

RESUMO

The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5'TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5'TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5' and 3'UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5'UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3'UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis.


Assuntos
Autoantígenos/metabolismo , Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Quinases S6 Ribossômicas 70-kDa , Antígeno SS-B
4.
J Biol Chem ; 289(19): 13132-41, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24652283

RESUMO

p70 ribosomal S6 kinase (S6K1), a major substrate of the mammalian target of rapamycin (mTOR) kinase, regulates diverse cellular processes including protein synthesis, cell growth, and survival. Although it is well known that the activity of S6K1 is tightly coupled to its phosphorylation status, the regulation of S6K1 activity by other post-translational modifications such as acetylation has not been well understood. Here we show that the acetylation of the C-terminal region (CTR) of S6K1 blocks mTORC1-dependent Thr-389 phosphorylation, an essential phosphorylation site for S6K1 activity. The acetylation of the CTR of S6K1 is inhibited by the class III histone deacetylases, SIRT1 and SIRT2. An S6K1 mutant lacking acetylation sites in its CTR shows enhanced Thr-389 phosphorylation and kinase activity, whereas the acetylation-mimetic S6K1 mutant exhibits decreased Thr-389 phosphorylation and kinase activity. Interestingly, relative to the acetylation-mimetic S6K1 mutant, the acetylation-defective mutant displays higher affinity toward Raptor, an essential scaffolding component of mTORC1 that recruits mTORC1 substrates. These observations indicate that sirtuin-mediated regulation of S6K1 acetylation is an additional important regulatory modification that impinges on the mechanisms underlying mTORC1-dependent S6K1 activation.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Acetilação , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Mutação , Fosforilação/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Sirtuína 1/genética , Sirtuína 2/genética , Serina-Treonina Quinases TOR/genética
5.
Methods Mol Biol ; 821: 29-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22125058

RESUMO

mTOR, an evolutionarily conserved Ser/Thr protein kinase, belongs to the PI3K-related kinase family, which also includes DNA-PKcs, ATM, and ATR. Although other PI3K-related kinase family members have been shown to secure genomic integrity by sensing DNA damage and related stresses, mTOR is known to function as a nutrient and growth factor sensor. mTOR is the catalytic subunit of two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). In response to growth factor and nutrient availability, these complexes regulate a variety of cellular processes, such as cell growth, proliferation, and survival by modulating downstream effectors, such as S6K1, 4EBP1, and AKT. Therefore, evaluation of mTOR activity has been a clear readout in order to monitor the physiological status of cells in response to environmental cues. Here, we present the current techniques for the assessment of mTOR kinase activity in different experimental settings.


Assuntos
Técnicas Imunológicas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Anticorpos/imunologia , Técnicas de Cultura de Células , Dano ao DNA/genética , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Proteínas/análise , Transdução de Sinais , Serina-Treonina Quinases TOR , Fatores de Transcrição/análise
6.
J Biol Chem ; 286(37): 32651-60, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21784859

RESUMO

Mammalian target of rapamycin (mTOR) is a kinase that plays a key role in a wide array of cellular processes and exists in two distinct functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Although mTORC2 is primarily activated by growth factors, mTORC1 is regulated by numerous extracellular and intracellular signals such as nutrients, growth factors, and cellular redox. Previous study has shown that cysteine oxidants sufficiently activate mTORC1 activity under amino acid-depleted conditions and that a reducing agent effectively suppresses amino acid-induced mTORC1 activity, thereby raising the possibility that redox-sensitive mechanisms underlie amino acid-dependent mTORC1 regulation. However, the molecular mechanism by which redox regulates mTORC1 activity is not well understood. In this study, we show that the redox-sensitive regulation of mTORC1 occurs via Rheb but not the Rag small GTPase. Enhancing cellular redox potential with cysteine oxidants significantly increases Rheb GTP levels. Importantly, modulation of the cellular redox potential with a cysteine oxidant or reducing agent failed to alter mTORC1 activity in TSC1(-/-) or TSC2(-/-) mouse embryonic fibroblast cells. Furthermore, a cysteine oxidant has little effect on mTOR localization but sufficiently activates mTORC1 activity in both p18(-/-) and control mouse embryonic fibroblast cells, suggesting that the redox-sensitive regulation of mTORC1 occurs independent of the Ragulator·Rag complex. Taken together, our results suggest that the TSC complex plays an important role in redox-sensitive mTORC1 regulation and argues for the activation of mTORC1 in places other than the lysosome upon inhibition of the TSC complex.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Proteínas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos , Neuropeptídeos/genética , Oxirredução , Transporte Proteico/fisiologia , Proteínas/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
7.
J Clin Invest ; 121(6): 2181-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21606597

RESUMO

Diabetic nephropathy (DN) is among the most lethal complications that occur in type 1 and type 2 diabetics. Podocyte dysfunction is postulated to be a critical event associated with proteinuria and glomerulosclerosis in glomerular diseases including DN. However, molecular mechanisms of podocyte dysfunction in the development of DN are not well understood. Here we have shown that activity of mTOR complex 1 (mTORC1), a kinase that senses nutrient availability, was enhanced in the podocytes of diabetic animals. Further, podocyte-specific mTORC1 activation induced by ablation of an upstream negative regulator (PcKOTsc1) recapitulated many DN features, including podocyte loss, glomerular basement membrane thickening, mesangial expansion, and proteinuria in nondiabetic young and adult mice. Abnormal mTORC1 activation caused mislocalization of slit diaphragm proteins and induced an epithelial-mesenchymal transition-like phenotypic switch with enhanced ER stress in podocytes. Conversely, reduction of ER stress with a chemical chaperone significantly protected against both the podocyte phenotypic switch and podocyte loss in PcKOTsc1 mice. Finally, genetic reduction of podocyte-specific mTORC1 in diabetic animals suppressed the development of DN. These results indicate that mTORC1 activation in podocytes is a critical event in inducing DN and suggest that reduction of podocyte mTORC1 activity is a potential therapeutic strategy to prevent DN.


Assuntos
Nefropatias Diabéticas/etiologia , Podócitos/enzimologia , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Diferenciação Celular , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Membrana Basal Glomerular/patologia , Mesângio Glomerular/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Complexos Multiproteicos , Fosforilação , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas/antagonistas & inibidores , Proteína Regulatória Associada a mTOR , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
8.
Science ; 332(6032): 966-70, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21512002

RESUMO

Protein synthesis and autophagic degradation are regulated in an opposite manner by mammalian target of rapamycin (mTOR), whereas under certain conditions it would be beneficial if they occurred in unison to handle rapid protein turnover. We observed a distinct cellular compartment at the trans side of the Golgi apparatus, the TOR-autophagy spatial coupling compartment (TASCC), where (auto)lysosomes and mTOR accumulated during Ras-induced senescence. mTOR recruitment to the TASCC was amino acid- and Rag guanosine triphosphatase-dependent, and disruption of mTOR localization to the TASCC suppressed interleukin-6/8 synthesis. TASCC formation was observed during macrophage differentiation and in glomerular podocytes; both displayed increased protein secretion. The spatial coupling of cells' catabolic and anabolic machinery could augment their respective functions and facilitate the mass synthesis of secretory proteins.


Assuntos
Autofagia , Senescência Celular , Vesículas Citoplasmáticas/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Retículo Endoplasmático Rugoso/ultraestrutura , Genes ras , Complexo de Golgi/ultraestrutura , Células HL-60 , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nocodazol/farmacologia , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Fenótipo , Podócitos/metabolismo , Podócitos/ultraestrutura , Biossíntese de Proteínas , Vacúolos/ultraestrutura , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
9.
Methods Enzymol ; 452: 165-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19200882

RESUMO

Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase implicated in a wide array of cellular processes such as cell growth, proliferation, and survival. Analogous to the situation in yeast, mTOR forms two distinct functional complexes termed mTOR complex 1 and 2 (mTORC1 and mTORC2). mTORC1 activity is inhibited by rapamycin, a specific inhibitor of mTOR, whereas mTORC2 activity is resistant to short-term treatments with rapamycin. In response to growth factors, mTORC2 phosphorylates Akt, an essential kinase involved in cell survival. On the other hand, mTORC1 can be activated by both growth factors and nutrients such as glucose and amino acids. In turn, mTORC1 regulates the activity of the translational machinery by modulating S6 kinase (S6K) activity and eIF4E binding protein 1 (4E-BP1) through direct phosphorylation. Consequently, protein synthesis and cell growth are stimulated in a variety of different cell types. In addition, mTORC1 inhibits autophagy, an essential protein degradation and recycling system, which cells employ to sustain their viability in times of limited availability of nutrients. Recent studies have highlighted the fact that autophagy plays crucial roles in many aspects of human health including cancer development, neurodegenerative disease, diabetes, and aging. It is likely that dysregulation of the mTOR-autophagy pathway may contribute at least in part to these human disorders. Therefore, the assessment of mTOR activity is important to understand the status of autophagy in the cells being analyzed and its role in autophagy-related disorders. In this section, we describe methods to monitor mTOR activity both in vitro and in vivo.


Assuntos
Proteínas Quinases/metabolismo , Autofagia/fisiologia , Linhagem Celular , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Serina-Treonina Quinases TOR
10.
Cell Cycle ; 7(3): 391-400, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18235226

RESUMO

Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.


Assuntos
Proteínas E1A de Adenovirus/fisiologia , Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F3/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia , Células Cultivadas , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Ativação Enzimática/fisiologia , Humanos , Camundongos
11.
Cell Cycle ; 5(8): 801-3, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16582589

RESUMO

Activation of the ATM DNA damage response pathway is commonly observed in a variety of early-stage neoplasias. It has been proposed that this checkpoint response functions to suppress the development of cancer. A recent report from our laboratory demonstrates that ATM does indeed function to suppress tumorigenesis by responding to at least some oncogenic stresses. Transgenic expression of Myc is found to cause DNA damage in vivo and ATM is shown to respond to this damage by inducing the accumulation and phosphorylation of p53. In the absence of ATM, p53-dependent apoptosis is reduced and epithelial tumorigenesis is accelerated in Myc transgenic mice. Deregulated expression of the E2F1 transcription factor also elicits an ATM-dependent checkpoint response that activates p53 and promotes apoptosis, although the mechanism by which E2F1 and Myc stimulate ATM may differ. These findings have relevance for understanding why the ATM pathway is activated in many human cancers, what generates the selective pressure for p53 inactivation during tumorigenesis, and why AT patients and carriers are predisposed to developing cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/fisiologia , Oncogenes , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/metabolismo
12.
Proc Natl Acad Sci U S A ; 103(5): 1446-51, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16432227

RESUMO

Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of gammaH2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development.


Assuntos
Apoptose , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Caspase 3 , Caspases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Ensaio Cometa , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Genótipo , Histonas/química , Humanos , Immunoblotting , Imuno-Histoquímica , Queratinócitos/citologia , Queratinócitos/metabolismo , Linfoma/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Neoplasias/metabolismo , Oncogenes , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Timo/patologia , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo
13.
Mol Cancer Res ; 2(4): 203-14, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15140942

RESUMO

The p53 tumor suppressor protein is phosphorylated and activated by several DNA damage-inducible kinases, such as ATM, and is a key effector of the DNA damage response by promoting cell cycle arrest or apoptosis. Deregulation of the Rb-E2F1 pathway also results in the activation of p53 and the promotion of apoptosis, and this contributes to the suppression of tumor development. Here, we describe a novel connection between E2F1 and the ATM DNA damage response pathway. In primary human fibroblasts lacking functional ATM, the ability of E2F1 to induce the phosphorylation of p53 and apoptosis is impaired. In contrast, ATM status has no effect on transcriptional activation of target genes or the stimulation of DNA synthesis by E2F1. Cells containing mutant Nijmegen breakage syndrome protein (NBS1), a component of the Mre11-Rad50 DNA repair complex, also have attenuated p53 phosphorylation and apoptosis in response to E2F1 expression. Moreover, E2F1 induces ATM- and NBS1-dependent phosphorylation of the checkpoint kinase Chk2 at Thr68, a phosphorylation site that stimulates Chk2 activity. Delayed gammaH2AX phosphorylation and absence of ATM autophosphorylation at Ser1981 suggest that E2F1 stimulates ATM through a unique mechanism that is distinct from agents that cause DNA double-strand breaks. These findings identify new roles for several DNA damage response factors by demonstrating that they also participate in the oncogenic stress signaling pathway between E2F1 and p53.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Cafeína/farmacologia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Quinase do Ponto de Checagem 2 , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Histonas/metabolismo , Humanos , Camundongos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transfecção , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...